Sunday, January 10, 2016

Proof Cauchy Riemann Equations

Cauchy Riemann equations are necessary conditions but not sufficient conditions to check if a function is analytic or not. According to the definition of derivative we have
f'(z_0)=\lim\limits_{\Delta z\to 0}\dfrac{f(z_0+\Delta z)-f(z_0)}{\Delta z}
One important fact to take notice is f(z)=f(x+iy)=f(x,y)
\Rightarrow f'(z_0)=\lim\limits_{\Delta x+i \Delta y \to 0}\dfrac{f(z_0+\Delta z)-f(z_0)}{\Delta x+ i\Delta y}
For the derivative to exists at point z_0 it should be same no matter what path we take to reach z_0
\Rightarrow f'(z_0)=\lim\limits_{x_0\to 0}\dfrac{f(z_0+\Delta z)-f(z_0)}{\Delta x}
Lets go around only x axis which means \Delta y=0
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta x \to 0}\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta x\to 0}\dfrac{u(x_0+\Delta x,y_0)+iv(x_0+\Delta x,y_0)-(u(x_0,y_0)+iv(x_0,y_0))}{\Delta x}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta x\to 0}\dfrac{u(x_0+\Delta x,y_0)-u(x_0,y_0)+iv(x_0+\Delta x,y_0)-iv(x_0,y_0)}{\Delta x}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta x\to 0}\dfrac{u(x_0+\Delta x,y_0)-u(x_0,y_0)}{\Delta x}+\lim\limits_{\Delta x\to 0}\dfrac{iv(x_0+\Delta x,y_0)-iv(x_0,y_0)}{\Delta x}
\Rightarrow f'(z_o)=u_x+iv_x
Now let’s go along only y axis i.e \Delta x = 0
\Rightarrow f'(z_0)=\lim\limits_{\Delta y\to 0}\dfrac{f(z_0+\Delta z)-f(z_0)}{i\Delta y}
\Rightarrow f'(x_0+iy_0)=\lim\limits_{\Delta y\to 0}\dfrac{f(z_0+\Delta z)-f(z_0)}{i\Delta y}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta y \to 0}\dfrac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{i\Delta y}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta y\to 0}\dfrac{u(x_0,y_0+\Delta y)+iv(x_0,y_0+\Delta y)-(u(x_0,y_0)+iv(x_0,y_0))}{i\Delta y}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta y\to 0}\dfrac{u(x_0,y_0+\Delta y)-u(x_0,y_0)+iv(x_0,y_0+\Delta y)-iv(x_0,y_0)}{i\Delta y}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta y\to 0}\dfrac{u(x_0,y_0+\Delta y)-u(x_0,y_0)}{i\Delta y}+\lim\limits_{\Delta x\to 0}\dfrac{iv(x_0,y_0+\Delta y)-iv(x_0,y_0)}{i\Delta y}
\Rightarrow f'(x_0,y_0)=\lim\limits_{\Delta y\to 0}-i\dfrac{u(x_0,y_0+\Delta y)-u(x_0,y_0)}{\Delta y}+\lim\limits_{\Delta x\to 0}\dfrac{v(x_0,y_0+\Delta y)-v(x_0,y_0)}{\Delta y}
\Rightarrow f'(z_o)=-iu_y+v_y
\Rightarrow f'(z_o)=v_y-iu_y
Now if the derivative has to exist both of these should be same i.e
\Rightarrow f'(z_o)=u_x+iv_x=v_y-iu_y
Equating real and imaginary parts we get
\Rightarrow u_x=v_y and \Rightarrow u_y=-v_x

0 Comments:

Post a Comment

<< Home

Site Meter