Thursday, December 17, 2015

Cauchy's Integral Formula

\gamma is a simple closed contour and if f(z) is analystic on and inside of \gamma then
\oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}}dz = \frac{2\pi i}{n!}f^{n}(z_0)
Evaluate the following four integrals

\oint_{|z|=3} \frac{e^{iz}}{z+i}dz =2\pi i e

\oint_{|z|=3} \frac{\sin(2\pi z)}{3z-1}dz =\frac{\sqrt{3}\pi i}{3}

\oint_{|z|=3} \frac{z+3}{(z-2)(z+4)^2}dz = \frac{2\pi i}{9}
\oint_{|z|=3} \frac{e^{iz}}{(z+1)^2}dz =-2\pi e

0 Comments:

Post a Comment

<< Home

Site Meter